Preparing NOJ # Splitting into digits

1000ms 262144K

## Description:

Vasya has his favourite number $n$. He wants to split it to some non-zero digits. It means, that he wants to choose some digits $d_1, d_2, \ldots, d_k$, such that $1 \leq d_i \leq 9$ for all $i$ and $d_1 + d_2 + \ldots + d_k = n$.

Vasya likes beauty in everything, so he wants to find any solution with the minimal possible number of different digits among $d_1, d_2, \ldots, d_k$. Help him!

## Input:

The first line contains a single integer $n$ — the number that Vasya wants to split ($1 \leq n \leq 1000$).

## Output:

In the first line print one integer $k$ — the number of digits in the partition. Note that $k$ must satisfy the inequality $1 \leq k \leq n$. In the next line print $k$ digits $d_1, d_2, \ldots, d_k$ separated by spaces. All digits must satisfy the inequalities $1 \leq d_i \leq 9$.

You should find a partition of $n$ in which the number of different digits among $d_1, d_2, \ldots, d_k$ will be minimal possible among all partitions of $n$ into non-zero digits. Among such partitions, it is allowed to find any. It is guaranteed that there exists at least one partition of the number $n$ into digits.

## Sample Input:

 1

## Sample Output:

 1 1

## Sample Input:

 4

## Sample Output:

 2 2 2

## Sample Input:

 27

## Sample Output:

 3 9 9 9

## Note:

In the first test, the number $1$ can be divided into $1$ digit equal to $1$.

In the second test, there are $3$ partitions of the number $4$ into digits in which the number of different digits is $1$. This partitions are $[1, 1, 1, 1]$, $[2, 2]$ and $$. Any of these partitions can be found. And, for example, dividing the number $4$ to the digits $[1, 1, 2]$ isn't an answer, because it has $2$ different digits, that isn't the minimum possible number.

Info Provider CodeForces

Code CF1104A

Tags

constructive algorithmsimplementationmath

Submitted 22

Passed 18

AC Rate 81.82%

Date 03/04/2019 16:49:27

Related

Nothing Yet