Preparing NOJ

To the Max

1000ms 10000K


Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:

9 2
-4 1
-1 8
and has a sum of 15.


The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].


Output the sum of the maximal sub-rectangle.

Sample Input:

0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2

Sample Output:




Provider POJ

Origin Greater New York 2001

Code POJ1050


Submitted 27

Passed 15

AC Rate 55.56%

Date 07/22/2019 17:05:14


Nothing Yet